If it's not what You are looking for type in the equation solver your own equation and let us solve it.
216/(t^2)=6
We move all terms to the left:
216/(t^2)-(6)=0
Domain of the equation: t^2!=0We multiply all the terms by the denominator
t^2!=0/
t^2!=√0
t!=0
t∈R
-6*t^2+216=0
We add all the numbers together, and all the variables
-6t^2+216=0
a = -6; b = 0; c = +216;
Δ = b2-4ac
Δ = 02-4·(-6)·216
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*-6}=\frac{-72}{-12} =+6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*-6}=\frac{72}{-12} =-6 $
| 180-7x=8x | | 2(x+3)=2(x)+2(3)=2x+6 | | X-2=1/2x-2 | | 14-2x=5+7x | | 131=-5(3x-8)+6x | | (x-3)/8=-4 | | 4-2t=7 | | 15+5x=x-5 | | 5/4x+4=-2 | | 4+6x-8x=2 | | (x+3)/8=-4 | | 15-5x=12-6x | | X=1/3x+2 | | 10x+1=2(x+10) | | Y+4=19-2y= | | 5-64x+8=67 | | 0.08(10+5)=0.08+0.08x5 | | 2x-1/6+3x+2/3=1/3 | | 2x+23=2 | | h=7+70(3)+-16(3)^2 | | 1/2x+8=x+4 | | 6x−5=7−9x | | 5x+-4=4x | | 4=2x=-6-3x | | 2(-5x+9)=-62 | | F(t)=212-6tF(t)=140 | | 61-27=x | | f(4)=(4-3)^2 | | 1/3x-8=x-16 | | -8.2+a=3.2 | | 2(-5x+9)=62 | | 12x+4+2x=32+7 |